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The nested epistemic actions model of abstraction in context has been used to analyse a solitary learner’s 
process of justification. In previous work, we have shown that this process gave rise to the phenomenon 
of parallel interacting constructing actions. In this paper, we analyse the interaction pattern of combining 
constructions, and show that combining constructions indicate an enlightenment of the learner. This adds an 
analytic dimension to the nested epistemic actions model of abstraction in context.

Introduction and Background

Abstraction has been a central issue in mathematics and science education for many years. The classic work 
by Piaget, Davydov, Skemp and others has in recent years been succeeded by research fora, symposia and 
discussion groups at various conferences, as well as several special issues of research journals, most recently 
the Mathematics Education Research Journal (Mitchelmore & White, 2007).

One of the approaches to research on abstraction presented on these occasions is abstraction in context, or AiC 
(Hershkowitz, Schwarz, & Dreyfus, 2001). This approach considers abstraction as a process of emergence of 
knowledge constructs that are new to the learner. In order to describe such processes at a fine-grained level, 
abstraction in context makes use of a model, the RBC model, which is based on three epistemic actions to be 
described below. The RBC model has been used for this purpose by different research teams with students of 
different ages learning about different mathematical topics (including square roots, algebra, probability, rate 
of change, function transformations, and dynamical systems), in a variety of social and learning contexts (see 
e.g., Hershkowitz, Hadas, Dreyfus & Schwarz, 2007, and references therein).

In particular, when analysing a solitary learner’s construction of a justification for bifurcations in dynamical 
systems, Dreyfus and Kidron (2006) found an overarching constructing action, within which four secondary 
constructing actions were nested. These secondary constructing actions were not linearly ordered but went 
on in parallel and interacted. Interactions included branching of a constructing action from an ongoing one, 
combining or recombining of constructing actions, and interruption and resumption of constructing actions. 
The aim of the present paper is to exhibit a facet of the analytic power of the RBC model for abstraction in 
context, by building on the research by Dreyfus and Kidron, and showing that combining constructing actions 
indicate crucial steps in the justification process, which lead to an enlightenment of the learner.

Abstraction in Context

Freudenthal has brought forward some of the most important insights to mathematics education in general, 
and to mathematical abstraction in particular, and this has led his collaborators to the idea of “vertical 
mathematization” (Treffers & Goffree, 1985). Vertical mathematization points to a process of constructing by 
learners that typically consists of the reorganization of previous mathematical constructs within mathematics 
and by mathematical means. This process interweaves previous constructs and leads to a new construct.

AiC adopts this view and defines abstraction as a process of vertically reorganizing previous mathematical 
constructs within mathematics and by mathematical means so as to lead to a construct that is new to the 
learner. The genesis of an abstraction passes through a three stage process, which includes the arising of the 
need for a new construct, the emergence of the new construct, and its consolidation. The need may arise from 
the design of a learning activity, from the student’s interest in the topic or problem under consideration, or 
from a combination of both; without such a need, however, no process of abstraction will be initiated. 

We note that this view of abstraction follows van Oers (2001) in negating the role of decontextualisation in 
abstraction, and embraces Davydov’s dialectic approach (1990) in that it proceeds from an initial unrefined 
first form to a final coherent construct in a dialectic two way relationship between the concrete and the 
abstract (see Hershkowitz et al., 2001; Ozmantar & Monaghan, 2007).
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Furthermore, we found that activity theory (Leont’ev, 1981) proposes an adequate framework to consider 
processes that are fundamentally cognitive while taking into account the mathematical, historical, social and 
learning contexts in which these processes occur. In this, we follow Giest (2005), who considers activity 
theory as a theoretical basis, which has an underlying constructivist philosophy but allows avoiding a number 
of problems presented by constructivism.

According to activity theory, outcomes of previous activities naturally turn to artefacts in further ones, a 
feature which is crucial to trace the genesis and the development of abstraction throughout a succession of 
activities. The kinds of actions that are relevant to abstraction are epistemic actions – actions that pertain 
to the knowing of the participants and that are observable by participants and researchers. Pontecorvo and 
Girardet (1993) have used this term to describe how children developed their knowledge on a historical issue 
during a discussion. The observability is crucial since other participants (teacher or peers) may challenge, 
share or construct on what is made public.

The RBC model

For the above reasons, Hershkowitz et al. (2001) have chosen to use epistemic actions in order to model the 
central second stage of the process of abstraction. The three epistemic actions they have found relevant and 
useful for their purposes are recognizing (R), building with (B) and constructing (C). Recognizing takes place 
when the learner recognizes that a specific previous knowledge construct is relevant to the problem he or she 
is dealing with. Building with is an action comprising the combination of recognized constructs, in order to 
achieve a localized goal, such as the actualization of a strategy or a justification or the solution of a problem. 
The model suggests constructing as the central epistemic action of mathematical abstraction. Constructing 
consists of assembling and integrating previous constructs by vertical mathematization to produce a new 
construct. It refers to the first time the new construct is expressed by the learner either through verbalization 
or through action. In the case of action, the learner may but need not be fully aware of the new construct. 
Constructing does not refer to the construct becoming freely and flexibly available to the learner. Becoming 
freely and flexibly available pertains to the third stage of the genesis of an abstraction, consolidation. Examples 
for constructing actions will be given below, in the subsection entitled “Combining Constructions”.

The RBC model constitutes a methodological tool used for realizing the ideas of abstraction in context. In 
this sense, it has a somewhat technical nature that serves to identify learner actions at the micro-level. On 
the other hand, the model also has a definite theoretical significance; Hershkowitz (2007) has discussed the 
theoretical aspects of the model, its tool aspects, and the relationships between them.

Combining Constructions and Enlightenment

In this section, we use the RBC model, and in particular the notion of constructing action, in order to describe 
and analyse the knowledge construction process of one mathematician, to be called L, learning about 
bifurcations in a logistic dynamical system. We have presented the description of this process elsewhere 
(Dreyfus & Kidron, 2006). While we were acutely aware that the core of the process is a justification, we did 
not pay attention to the question what justification means for L, nor did we analyse the relationship of this 
meaning of justification to the constructing actions and the interactions between them. This is the focus of 
the present paper.

Methodological Considerations

Gathering data about learning processes is methodologically non-trivial. Gathering data about the learning 
process of a solitary learner presents even greater challenges because there is usually no need for the learner 
to report about her learning. In the present study, L’s epistemic actions were inferred from the detailed notes 
she took, her Mathematica files, and her computer printouts. Like many mathematicians, L wrote, graphed, 
drew and sketched a lot, some by hand and some by computer. As is her habit, she carefully dated and kept 
these notes as well as all computer files and printouts. These documents later served as a window into her 
thinking for the researchers. 

A priori, L’s collection of her notes, files and printouts had nothing to do with a plan for the present or any 
other research. In fact, the idea of using them as raw data for a research study has only been conceived several 
months after they had been collected. The researchers then constructed a report of the learning process, 
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following an elaborate procedure of several cycles of description by the first author and challenges by the 
second author. The accuracy of the report may be verified by observing its close correspondence with the raw 
data, some of which have been published (Dreyfus & Kidron, 2006). 

Once the report was agreed upon, we adopted the RBC methodology for identifying epistemic actions 
(Hershkowitz et al., 2001). The report of the learning experience was divided into episodes, numbered 1-16. 
Each episode forms a cognitively coherent unit. For the purpose of analysis, each episode was further divided 
into subunits, called events, and denoted by Latin letters a, b, c, and so on. Events are the equivalent to 
utterances for the case of a solitary learner; they form the minimal units that can be categorized as epistemic 
actions according to the RBC model.

One of the tasks of the researchers when using the RBC model is to decide which constructing actions to 
focus on. For this purpose, each of us independently proposed constructs, which we saw as emerging during 
the learning process, as candidates for constructing (C) actions. Agreement between us was fairly high, once 
we agreed on grain size. We identified one overarching C action and four regular C actions whose relevance 
was obvious to both of us (for more detailed methodological considerations, see Dreyfus and Kidron, 2006). 
Next, we independently marked each episode according to which of the four regular C actions were active in 
the episode. There was full agreement between us concerning active C actions. The analysis of the resulting 
web of interweaving C actions forms the topic of the next subsection. 

Combining Constructions

L was interested the following iterative process: Given the quadratic function f(x) = x + r x (1x), where r is a 
real parameter, consider the sequence of values {xn} produced from an initial value x0, 0< x0 <1, by successive 
application of f, that is xn+1 = f(xn)=fn(x0), for all n ≥ 0. L discovered empirically that for certain values of r, 
the sequence of values {xn} converges to a fix point; for somewhat larger values of r, it approaches a process 
of period 2, for even larger values of r, a process of period 4, and so on. With some support from books and 
internet sources, she soon computed that the transition from the fix point regime to the 2-periodic regime 
occurs at r=2 and that this can be computed on the basis of a quadratic polynomial with parameter r, by 
showing that r=2 is the smallest value for which the discriminant of this polynomial vanishes, and thus the 
polynomial has a double root.

In the episodes of interest in the present research, L set out to understand where and why the transition from 
the 2-periodic to the 4-periodic regime occurs. The corresponding constructing actions and some of their 
interactions are described in this subsection and illustrated by means of the diagram in Figure 1. The time axis 
of the figure runs from top to bottom.

L spent a considerable number of hours, spread over about two weeks, investigating this question. While the 
question is analogous to the one concerning the previous transition from fix point to 2-period, the polynomial 
pr(x)=0 of interest is now of order 12. Web resources led L to the notion of discriminant for a general 
polynomial (episode 5), which she used with the help of Mathematica (episode 6) to find the numerical value 
r = 6  for the transition point to the 4period. This value of r neatly corresponded to the empirical evidence 
she had collected. Encouraged by this numerical success, she began to search for the mathematical reasons 
behind it (episode 7).

One of L’s constructing actions, denoted C1, is the process of finding the four solutions of the polynomial 
equation pr(x)=0 in the case of period 4. The solution process is considered algebraically and numerically. 
The focus is on the solutions for fixed values of the parameter r and on relationships between the solutions 
for different values of r.

Another constructing action, denoted C2, is the process of constructing algebraic connections between the 
transition point from the 2-periodic to the 4-periodic regime, the existence of multiple roots of the equation 
pr(x)=0, and the zeros of the discriminant of pr(x).

As can be seen in the diagram in Figure 1, at the beginning of episode 7, construction C1 branches off from 
the ongoing construction C2. This happened when L attempted to algebraically connect between the zeros of 
the discriminant and the transition point, but saw no way to reach this goal because of the complexity of the 
equations involved. This led her to take a more familiar approach, using numerical calculations belonging to 
C1 that she expected to eventually lead to the same goal. 
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This branching of C1 from the ongoing C2 can be explained by means of a refinement of the classification 
of building-with (B) epistemic actions. Specifically, a class of B-actions was introduced whose purpose it is 
to organize the problem space so as to make its further investigation possible. Such actions can lead to the 
requirement of additional constructions and thus branching.

It has been shown how interruptions, resumptions and combining of constructions can be similarly explained by 
means of refined and/or modified R- and B-epistemic actions. The reader is referred to Dreyfus and Kidron (2006) 
for details. Here, we focus on combining constructions, such as the combining of C1 and C4 in episode 10. 

Figure 1. L’s interacting parallel constructions.

C4 denotes the construction of a dynamic view of the bifurcation in which the final state values of the process 
(the solutions of pr(x)=0) are considered as functions of r. This construction started for L when she had 
exhausted all her algebraic and numerical resources at the end of episode 9. She considered various graphic 
representations and focused on the transition of interest:

10d Looking at these values in the bifurcation diagram, my attention was focused on the transition from 
the 2period to the 4period. This focus was different from the one I had had previously when each time 
series plot gave a partial picture corresponding to a specific value of the parameter r.
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10f I looked at the fork-like shape and associated its splitting with the fact that the discriminant vanishes. 
Suddenly, the bifurcation diagram seemed different, endowed with a new meaning. I looked at it and I 
could not understand how I failed to see it this way before.

The gradual approach between C1 and C4 in Figure 1 expresses the connection in L’s thinking of the numerical 
mode and the graphical mode, which during this approach changed from being static to being dynamic. L’s 
integration of the two modes of thinking results in her view of the transition as a dynamic graphic – numerical 
process: Her conception of the nature of the parameter r changed from being discrete to being continuous. The 
two constructions C1 and C4 have combined.

While this was intuitively satisfying, it only constituted a first stage since it did not provide the justification 
L was looking for. She had no algebraic handle on the discriminant, which would connect its zeros to the 
transition point. She returned to the algebraic mode of thinking C2, which was now strengthened by her 
graphic-numerical insight, but she made little progress until, in episode 13, she resumed construction C3, the 
process of linking between the derivative of a polynomial, in this case the derivative of pr(x), the zeros of its 
discriminant, and the stability of fix points and periods. 

This was of interest to L because she vaguely remembered that fix points are stable if the derivative of f is 
smaller than 1 and unstable if the derivative of f is bigger than 1. Thus 1 is the limiting value of stability, and 
at this value a transition occurs. 

L carried out a straightforward but rather technical computation showing that pr’(x)=0 (and thus pr(x) has 
a multiple root and its discriminant equals zero) if and only if the derivative of f4(x)=f(f(f(f(x)))) equals 1. 
Possibly without being fully aware, she extended her vague knowledge that the value of 1 of the derivative of 
f is the limiting value of stability for fix points to the same value 1 of the derivative of f4(x) being the limiting 
value of stability for a 4-period.

13i At this moment, I connected the last equality with my previous vague knowledge that fix points change 
stability when the (absolute value of the) derivative moves across the border 1 as the parameter r 
varies.

13j At last, I found some connection between the fact that there exists a multiple root (therefore, the 
discriminant equals 0) and the way fix points change stability.

It turned out that this value of 1 of the derivative contained an unwanted minus sign, and L needed more time 
and effort to clear this up; this is the reason why in Figure 1 the combining of constructions C3 and C2 in 
episode 13 is only partial.

Justification and Enlightenment

In the episodes of interest in the present research, L set out to understand where and why the transition from 
the 2-periodic to the 4-periodic regime of the logistic dynamical system occurs. At the beginning of episode 8, 
and again at the beginning of episode 11, right after the first combining of constructions, she expressed what 
she was looking for, and it was not a formal proof:

8a My aim was to justify why the transition from 2-period to 4-period occurs for the smallest positive real 
number for which the discriminant equals zero.

8b I felt the need to explain why the requirement that the discriminant equals zero permitted to find the 
value of the parameter r for which the 4-period begins.

11a I was interested in a mathematical explanation why the transition point from 2-period to 4-period is 
obtained by setting the discriminant equal to zero.

Her question thus was how the value of the discriminant D = 0 was connected to the transition between 
regimes of the dynamical system. Her aim was to convince herself, not others. She felt the need to explain 
because she wanted to gain more insight. 
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L’s drive to understand the transition was to some extent satisfied intuitively and visually in episode 10, 
through the combining of the C1 and C4 epistemic actions, and she expressed this as follows:

10g Now, it seemed to me intuitively clear that at the bifurcation points there must be double solutions and 
therefore the discriminant should equal zero.

She similarly expressed added insight at the end of episode 13, and again at the end of episode 16:

13k Now I understood why at the bifurcation points the discriminant should equal zero. The different 
elements fit together nicely, like in a puzzle.

16d Now I was sure that my mathematical construction will not collapse any more … I was absolutely 
confident in my justification why the discriminant equals zero, even if the fact that f4’(x)=1 was 
demonstrated at this stage only numerically (based on intuition and authority).

In this sense, L’s use of the word justification was very close to Rota’s view of enlightenment in the sense of 
insight into the connections underlying the statement to be justified:

Verification alone does not give us a clue to the role of a statement within the theory; it does not explain 
the relevance of the statement … the logical truth of a statement does not enlighten us as to the sense of the 
statement. … every teacher of mathematics knows that students will not learn by merely grasping the formal 
truth of a statement. Students must be given some enlightenment as to the sense of the statement. (Rota, 
1997, pp. 131-132)

and

Mathematical proof does not admit degrees. A sequence of steps in an argument is either a proof, or it is 
meaningless. Heuristic arguments are a common occurrence in the practice of mathematics. However, 
heuristic arguments do not belong to formal logic … . Proofs given by physicists admit degrees. In physics, 
two proofs of the same assertion have different degrees of correctness … . A great many characteristics of 
mathematical thinking are neglected in the formal notion of proof. (ibid., pp. 134-135)

Thus the combining of the C1 and C4 actions is an expression of L reaching a first degree of enlightenment, and 
a feeling of having to some extent explained and justified the structure of the double solution at the transition 
by means of a dynamic view of the bifurcation. Similarly, the combining of the algebraic mode of thinking 
of C2 with the analytic mode of thinking of C3 in episode 13 expresses L’s second degree of enlightenment, 
which is reinforced by the fact that her previous, if vague, knowledge about the stability of dynamical systems 
directly confirmed the connection she had established computationally. 

Finally, she reached a third degree of enlightenment in episode 16, when she was able to numerically link 
the dynamic view of the transition – the C1/C4 construct from episode 10 – to the link between stability and 
derivatives – the C2/C3 construct from episode 13 – and thus achieve an integration of all four constructing 
actions. 

Conclusion

We remind the reader that the interacting parallel constructions diagram in Figure 1 was obtained by 
considering L’s process of justification as a process of abstraction in context and analysing it by means of 
the epistemic actions of the RBC model. Only after this description of the process was complete, did we 
realize the particular meaning, which L associated with the notion of justification, and discover that each 
additional degree of enlightenment occurs with a combination of two constructions, and each combination 
of two constructions indicated an additional degree of enlightenment. This enriches the analytic power of 
the RBC-model: It allows researchers to use the epistemic actions of the RBC model in order to identify a 
learner’s enlightening justification.
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